Feasibility of real-time MRI with a novel carbon catheter for interventional electrophysiology.
نویسندگان
چکیده
BACKGROUND Cardiac MRI offers 3D real-time imaging with unsurpassed soft tissue contrast without x-ray exposure. To minimize safety concerns and imaging artifacts in MR-guided interventional electrophysiology (EP), we aimed at developing a setup including catheters for ablation therapy based on carbon technology. METHODS AND RESULTS The setup, including a steerable carbon catheter, was tested for safety, image distortion, and feasibility of diagnostic EP studies and radiofrequency ablation at 1.5 T. MRI was performed in 3 different 1.5-T whole-body scanners using various receive coils and pulse sequences. To assess unintentional heating of the catheters by radiofrequency pulses of the MR scanner in vitro, a fluoroptic thermometry system was used to record heating at the catheter tip. Programmed stimulation and ablation therapy was performed in 8 pigs. There was no significant heating of the carbon catheters while using short, repetitive radiofrequency pulses from the MR system. Because there was no image distortion when using the carbon catheters, exact targeting of the lesion sites was possible. Both atrial and ventricular radiofrequency ablation procedures including atrioventricular node modulation were performed successfully in the scanner. Potential complications such as pericardial effusion after intentional perforation of the right ventricular free wall during ablation could be monitored in real time as well. CONCLUSIONS We describe a newly developed EP technology for interventional electrophysiology based on carbon catheters. The feasibility of this approach was demonstrated by safety testing and performing EP studies and ablation therapy with carbon catheters in the MRI environment.
منابع مشابه
Interactive real-time mapping and catheter ablation of the cavotricuspid isthmus guided by magnetic resonance imaging in a porcine model
AIMS We investigated the feasibility of real-time magnetic resonance imaging (RTMRI) guided ablation of the cavotricuspid isthmus (CTI) by using a MRI-compatible ablation catheter. METHODS AND RESULTS Cavotricuspid isthmus ablation was performed in an interventional RTMRI suite by using a novel 7 French, steerable, non-ferromagnetic ablation catheter in a porcine in vivo model (n = 20). The c...
متن کاملFeasibility of real-time magnetic resonance imaging for catheter guidance in electrophysiology studies.
BACKGROUND Compared with fluoroscopy, the current imaging standard of care for guidance of electrophysiology procedures, magnetic resonance imaging (MRI) provides improved soft-tissue resolution and eliminates radiation exposure. However, because of inherent magnetic forces and electromagnetic interference, the MRI environment poses challenges for electrophysiology procedures. In this study, we...
متن کاملReal-time three-dimensional transesophageal echocardiography for guiding interventional electrophysiology: feasibility study.
At present, there are limited methods of acquiring three-dimensional visualization of cardiac structure and function in real-time during interventional electrophysiology procedures. Images acquired for integration of computerized tomography and magnetic resonance imaging with electroanatomic mapping systems are static and are obtained earlier in time. The purpose of this study was to test the f...
متن کاملMultifunctional interventional devices for MRI: a combined electrophysiology/MRI catheter.
The design and application of a two-wire electrophysiology (EP) catheter that simultaneously records the intracardiac electrogram and receives the MR signal for active catheter tracking is described. The catheter acts as a long loop receiver, allowing for visualization of the entire catheter length while simultaneously behaving as a traditional two-wire EP catheter, allowing for intracardiac el...
متن کاملMRI-based visual and haptic catheter feedback: simulating a novel system's contribution to efficient and safe MRI-guided cardiac electrophysiology procedures
Background MRI-guided Electrophysiology (EP) procedures integrate real-time MRI images with catheter position during Radiofrequency Ablation (RFA) of arrhythmias [1]. Using simultaneous MR catheter tracking and imaging [2], this technology can both guide catheter manipulation and provide dynamic assessment of lesion efficacy [3]. Despite advances in MRI-guided EP, maneuvering catheters to the d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation. Arrhythmia and electrophysiology
دوره 2 3 شماره
صفحات -
تاریخ انتشار 2009